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THE LIFT AND MOMENT ACTING ON A THICK AEROFOIL
IN UNSTEADY MOTION

7 By L. CG. WOODS, D.Sc.t
New Zealand Scientific Defence Corps, seconded to the Aerodynamics
Division of the National Physical Laboratory

(Communicated by R. A. Frazer, F.R.S.—Received 18 November 1953—
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® = A new approach to the problem of calculating the unsteady two-dimensional flow about aero-
e ) foils in an incompressible fluid is presented. While the flow is assumed to be inviscid throughout, the
s 5 potential flow boundary conditions are modified semi-empirically to make some allowance for
T O viscous effects. The method is applicable to thick aerofoils, the only limitation being that the
~ velocities and displacements of the unsteady perturbations about the mean steady motion must

be small. The dependent variable of the method is the complex harmonic function In (U ei?/q),
where U is the velocity at infinity, and (g, 6) is the velocity vector in polar co-ordinates, while the
independent variables are ¢, and ¥, the potential and stream functions of the mean steady flow
about the aerofoil. The wake is assumed to be a vortex sheet drifting down the trailing edge
streamline of the mean steady motion with the (local) velocity of the steady motion. Algebraic
results are obtained for the lift and moment by an application of Blasius’s theorem. The theory

PHILOSOPHICAL
TRANSACTIONS
OF

T Now at the Department of Applied Mathematics, University of Sydney.

Vol. 247. A 925 (Price 10s.) 17 [Published 4 November 1954

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to [P

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. RIN®RY
WWW.jstor.org

e



http://rsta.royalsocietypublishing.org/

a
s \
A

ma \

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) ¢

A \

4
y

P
A
=aSy

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

132 L. C. WOODS ON THE LIFT AND MOMENT

is applied to the special case of an aerofoil describing harmonic oscillations which have persisted
for an infinite time.

Provided the Reynolds number is sufficiently large for boundary-layer theory to be applicable,
viscosity can be regarded as having three main effects on the theoretical potential flow. These are:
(i) that it modifies the Joukowski condition that the position of the rear stagnation point is in-
dependent of incidence, (ii) that it modifies the velocity distribution of the mean steady flow,
particularly near the trailing edge, and (iii) that it contributes a term to the damping which
exists even in still air. The author’s theory allows for (i) and (ii) but not for (iii).

The theory yields three distinct effects of aerofoil thickness on the classical flat-plate oscillatory
derivatives. These are: (i) the reduced frequency w is replaced by dw, where 278 is the theoretical
lift-slope, (ii) the force and moment derivatives are multiplied by factors of 8, and (iii) the reduc-
tion of the wake velocity due to the thickness of the aerofoil changes the flat-plate derivatives by
an amount which is quite large at high values of w.

Tables are given from which it is possible to deduce with little effort the effects of aerofoil
thickness and viscosity on the air-load coefficients. The theory yields results in close agreement
with some recent Dutch measurements of the air-load coefficients and also with some earlier
measurements at the National Physical Laboratory.

NotaTION

_ (a) General
(%,9) a physical plane fixed in space,
z=x+iy,i=,/—1,
(%0,4,)  a physical plane fixed relative to the aerofoil,
zg = %o +1Yq,
w = ¢+1iy, the complex stream function of the unsteady flow,

(g,0) velocity vector in polar co-ordinates,
0 as a suffix to denote values in the steady flow of zero circulation,
a the aerofoil transforms into the slit ¥, = 0, —2a<¢@,< 24,
(1,7) elliptic co-ordinates defined by equation (6),
U velocity at infinity,
f is defined by the equation
fe ln(Ug%) —In (Ujq) +i, (1)
a incidence measured from the no-lift position,
(u,v) velocity components of the aerofoil along the OX and OY axes respectively,
(ug,v,)  velocity components of the aerofoil along the 0, X, and 0,Y; axes respectively,
K the jump in value of In (U/q) across the wake,
P, defines the position of the end of the wake,
—U the value of 7 at the end of the wake, ¢, = ¢,, ¥, =0,
a, b, ¢, defined by equations (51), (52) and (48) respectively,
¢, 4 the chord length and cross-sectional area of the profile respectively.
k the radius of gyration of the profile about the origin in the z,-plane,
z, the centroid of the profile in the z,-plane,
z, the profile centre defined by equation (38),
0 = 4a/Uc,

D,L, M the drag, lift and moment about the origin of the z,-plane respectively,
Cp,Cp  lift and moment coefficients,
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ACTING ON A THICK AEROFOIL IN UNSTEADY MOTION 133

P density,

01,0y values of y at the front and rear stagnation points respectively.
(b) Oscillatory motion

v/2m the frequency of harmonic oscillations,

v the reduced frequency, v/cU,

A = }wd, a modified reduced frequency,

C = A—1iB, Theodorsen’s function, the parameter of which is 4,

x%,4% a° the amplitude of harmonic displacements; see equation (64),

€ a factor determining the viscous slip at the trailing edge; see equation (65).

1. INTRODUCGTION

The methods employed hitherto on the theory of unsteady aerofoil motion are: (i) the
velocity potential method, (ii) the method of vortices, and (iii) the method of the accelera-
tion potential. An account of these methods and their relative merits has been given by
Greidanus & Van Heemert (1948). The present paper introduces another approach to the
theory of unsteady aerofoil motion in two dimensions, based on the analytic character of
the function f defined by equation (1). The independent variables are ¢, and ¥, the poten-
tial and stream functions of the steady no-lift flow about the aerofoil. In the plane defined
by these variables the boundary conditions are relatively simple—the imaginary part of f,
namely, 8, is given on the aerofoil surface, ¥, = 0, —2a<¢$,< 24, while the jump, K, in the
real part of f, is known, or can be calculated across the wake, ¥, = 0, 2a<¢,<¢,. Thus
f(w,) can be determined quite easily. This calculation is given in the next section.

The treatment of the aerofoil wake given in §3 differs in two respects from the usual
treatment. First, it is not assumed that the vorticity in the wake drifts downstream with
constant velocity U. This, the usual approximation, is replaced by the more accurate con-
dition that the vorticity moves downstream with the local velocity of the mean steady flow.
This means that owing to the aerofoil thickness the vorticity moves away from the aerofoil
with a velocityless than U, which tends to the value U with increasing distance downstream.
This ‘slowing up of the wake’ is found to have a significant effect at large values of the
frequency parameter. Secondly, the Kelvin circulation theorem is used instead of the usual
condition of ‘smooth flow’ at the trailing edge. The smooth-flow condition, namely, that
the flow always leaves the trailing edge tangentially to the aerofoil surface, is only applicable
to cusped trailing edges, whereas Kelvin’s theorem is quite general and independent of
the aerofoil shape. In any case the smooth-flow condition could not be applied in the method
of this paper, since the rear stagnation point is not assumed to be fixed exactly at the trailing
edge, but is permitted to make very small excursions on either side of the trailing edge
during the unsteady motion of the aerofoil.

It is assumed in the paper that most important effects of viscosity can be allowed for
in the (inviscid) potential flow theory, by modifying the boundary conditions of the theo-
retical potential flow. Viscosity is responsible for the following effects, not allowed for in
the classical theory of unsteady aerofoil motion: (i) ‘viscous slip’ at the trailing edge (non-
fulfilment of the Joukowski condition), (ii) a modification of the mean steady velocity
distribution, especially near the trailing edge, and (iii) ‘ viscous damping’ of the type present

17-2
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134 L. G. WOODS ON THE LIFT AND MOMENT

in still air. The author’s theory allows for (i) by permitting the rear stagnation point to
oscillate about the trailing edge in phase with the local relative incidence, and with such
an amplitude that the experimental value of the steady lift slope is reproduced by the
theory in the limit as the frequency tends to zero. The effect (ii) is allowed for by replacing
the theoretical value of z,, the position of the profile centre} by the experimental value,
which can be calculated from an experimental value of the rate of change of the moment
coefficient for a known axis position. The author’s theory does not allow for (iii), the
calculation of which is quite a difficult problem in the theory of viscous flow. W. P. Jones
(1948) has developed a thin aerofoil theory allowing for (i) in which the ‘equivalent’ thin
wing distorts in phase with the motion and with such an amplitude distribution that the
experimental steady motion characteristics are obtained from the theory in the limit as
the frequency tends to zero. Inasmuch as the steady motion characteristics taken from
experiment are affected by the aerofoil thickness, Jones’s theory also makes partial allow-
ance for the effect of thickness. ,

Although it will be assumed that the rear stagnation point makes small movements
during the course of the unsteady motion, the wake vorticity will be supposed to lie along
the fixed trailing edge streamline of the mean steady motion. Even with a fixed rear stag-
nation point the vorticity would not lie exactly along this streamline, but as demonstrated
by Greidanus & Van Heemert (1948), the errors arising from this approximation in the
position of the vorticity are negligible. The same type of approximation—that is, an
approximation in the position of the boundary conditions—is employed on the aerofoil
surface. The boundary conditions for the unsteady part of the motion are applied at the
mean position of the aerofoil surface. This approximation clearly imposes a limit on the
amplitude of the unsteady perturbations about the mean motion, and the theory can only
be regarded as correct to first order in the amplitudes and velocities of the perturbations.

In § 4 the lift and moment is calculated by means of Blasius’s theorem for unsteady flow.
An extensive study of the application of this theorem to the unsteady motion of aerofoils
has been made recently by Couchet (1949, 1950). He obtains formulae allowing for the
effect of aerofoil thickness on the lift and moment, but does not allow in any way for the
effects of viscosity. No comparison with experiment is made. For modern aerofoil shapes
the viscous effect on the lift and moment is often larger and of opposite sign to the thickness
effect, so that a theory allowing for thickness only can be further away from the experimental
values than the simple flat-plate theory.

In§ 5 the theory is applied to the case of a rigid aerofoil. While the method can be readily
extended in an obvious way to the case of a non-rigid aerofoil, e.g. to an aerofoil fitted with
a hinged flap, in the interests of brevity the calculation is not given in this paper. The theory
given in part I, which applies to any type of unsteady motion, is developed in part II for
the special case of harmonic oscillations which have persisted for a relatively long time.
For the particular case when the aerofoil degenerates to a flat plate, and the ‘viscous slip’
at the trailing edge is zero, the theory given in part II correctly reduces to the classical
flat-plate theory. The paper concludes with a comparison of theory and experiment, from
which it appears that the theory satisfactorily accounts for most of the discrepancies
between the classical theory and experimental results.

T Defined on p. 140—the mid-chord point for a flat plate.
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ACTING ON A THICK AEROFOIL IN UNSTEADY MOTION 135

PART I. GENERAL THEORY
2. THE DIFFERENTIAL EQUATION AND ITS SOLUTION

Since f defined by equation (1) is an analytic function of z, it satisfies Laplace’s equation
in the z-plane, and in any other plane derived from the z-plane by a conformal transfor-
mation. In this section we solve Laplace’s equation, with the appropriate boundary
conditions, in an auxiliary {-plane derived from the z-plane by a conformal transformation.

The plane defined by
zy = (z2—z,) e (2)

and shown in figure 1, has its origin fixed in the aerofoil at O,. Both z,, the position of O,
in the z-plane, and « are functions of the time, £, in fact

*a”t'" == u+iﬂ, (3)
da .
Q=% (4)

where u+iv is the velocity of O, in the z-plane and ¢ is the (nose-up) angular velocity of
the profile.

Ficure 1

The complex stream function for the steady zero-circulation flow is denoted by
wy = @o+1¥,, and the aerofoil is represented in this plane by the slit ¥, = 0, —2a<g,< 2a.
The leading edge of the aerofoil, or, more precisely, the front stagnation point for the
steady flow of zero circulation, is at ¢, = — 2a, while the rear stagnation point is at ¢, = 2a.

The wy-plane is rigidly embedded in the z,-plane, the O, X, axis of which is taken to be
parallel to the direction of the steady flow at infinity. Thus, as shown in figure 4, 6, is the
angle between the steady-flow direction and the O, X, axis. Similarly, 4 is taken to be the
angle between the unsteady-flow direction and the OX axis. This particular selection of
the 0, X, and OX axes makes f (see equation (1)) and f;, where

fo = 1n(Udﬁ), (5)

dw,
vanish at infinity.

It is convenient to introduce an auxiliary plane, { = 5+ iy, defined by
wy = —2acosh {, (6)
so that on the aerofoil surface 7 = 0, and

$o = —2acosy. (7)
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136 ‘L. C. WOODS ON THE LIFT AND MOMENT

The conformal transformation (6) is illustrated in figure 2. If m is a positive or negative
integer then the whole of the wy-plane is mapped into each of the semi-infinite strips

—0o<y<0, (2m—1)r<y<(2m+1)m. (8)
The aerofoil is repeated periodically on = 0, while the trailing edge streamline lies on
the lines y = (2m-+1) 7.

1Y
37
n=-§
wake b
O [ - m
d_ aerofoil b wake a fo g P&~ d |aerofoil
9 7]:0 b ¢s o : 7
N wake o] 3 [
n=-£%
wp—plane {-plane 37

Ficure 2

The wake produced by the unsteady motion of the aerofoil will be assumed to be a vortex
sheet lying on the trailing edge streamline of the steady flow, i.e. on y =7, —u<y<0.
The end of the wake, 7 = —u, drifts downstream with the velocity of the steady flow, so
that after an infinite time x# = co. Since the tangential velocity is discontinuous across the
vortex sheet, f has a jump in the value of its real part on the lines y = (2m-+1) 7, when
—u<n<0.

Returning now to the idea expressed in the first paragraph of this section, we have that
f(¢) is an analytic function, since equations (2), (6) and w, = wy(z,) are all conformal
transformations. Besides the discontinuities in f on y = (2m-+1) 7 mentioned above, f({)
may also have logarithmic singularities on the aerofoil surface, 7 = 0, due to stagnation
points or sharp corners. However, within the contours given by (8), f({) is a well-behaved
analytic function which plainly satisfies

SE) =S+ 2imm). G
The fundamental theorem of this paper will now be stated and proved.

THEOREM. If 0(y*) is the value of 0 on the aerofoil surface and K(n*) is the jump in the value of

In (Ulq) across the wake, y = m, —u<yn* <0, then at any point P(), fis given by

N 1 . « isinh {0 K(p*)dy*
SO = | 00 cordlr 40 aye 1 L[ IR (10)

(In general ¢ and K are functions of time.)
Proof. Now fis an analytic function in the regions
—E<p<0, (2m—1)m<y<(@m-+1)7m (11)
(m=0,+1,+2, ..., +£00). Thus from Cauchy’s theorem in the case m+ 0, and Cauchy’s
integral in the case m = 0, it follows with the aid of equation (9) that

m+0 0 Ly fl0y) _ S(=87)
m=0 f(o_gﬁU_"(iy—l-2mi7r——§ —§+i7—|-2mi71——§)1d7

+.f0_5 (77+2J7:2(i”7r,—1|r—)i7r——é’*17-l—J2[§:z]i,7ri721——§) d”}’ (12)
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ACTING ON A THICK AEROFOIL IN UNSTEADY MOTION 137
where f(y, +7) =limf(y,m4+¢), and the point P({) has been assumed to lie within
€=0

—{<n<0, —m<y<m, without loss of generality. The possible logarithmic singularities
in f on 5 = 0 make no contribution to the contour integrals, as is easily verified by first
indenting the contours with semicircles about these singularities, and then allowing the
radii of the indentations to tend to zero.

From (6), limf{—&,y) — lim flw,) — limf(z,) = 0; also lim S (a+bm)-! =—Zcot17b£,

£=o wo=00 Zp=00 M=o m=—M

and so applying these two limits to the equation obtained by summing equations (12)
from m = — M to m = M, we find

SO = g ] SO0 cotdr+i0 dr g [ [T tanh bo—0) . (13)
where [/ =£(1,m) (1, —7). )

If {is replaced by —{ in equation (13) (the bar denoting ‘ conjugate’) then, since P(—{)
is a point outside al/ the regions defined by (11), the left-hand side of the equation will
vanish. The conjugate to the equation just described is

| . 1 (°
0= Rf_ﬂf((), 7) cot §(y+il) dy + Zﬁf_wm tanh (y+¢) d. (14)
Since # is continuous across the wake,
L/1=1f1=1n(U/q) =K, (15)

say, and K = 0 when 7 < —y; also

J(0,7)=F(0,7) = 2i6(0,7).
The theorem now follows immediately by subtraction of equation (14) from (13).
In steady motion K = 0. In particular, when the aerofoil is at zero circulation, equation
(10) reduces to

= Si_ZQ —1 i i % 1 % . *
Jo=In (wao) - QWJ_” Oo(y*) cot 3(y*+1i{) dy*, (16)
where 0, is the steady part of # for zero circulation.

3. CONDITIONS IN THE WAKE
An integral equation for the function K(7*) of equation (10) can be established with
the aid of the following fundamental laws:
(a) the Kelvin circulation theorem, which states that the circulation or potential jump,
[#]c, about any circuit C moving with the fluid, is constant, and
(b) the Helmholtz law on the persistence of vorticity, which can be written

Sl =o, (17)

where [g¢] is the jump in the value of ¢ across the wake (equal to the surface density of
ticit d d/d¢ is defined b
vorticity), and d/d¢ is defined by d_d ds0gy 0
dt™dt ot ds 99’

d a9

. Y 2“ ‘
1.€. dt—at+qoa¢0, ) (]‘8)

q, being the steady velocity along the trailing edge streamline.
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138 L. C. WOODS ON THE LIFT AND MOMENT

In applying Kelvin’s theorem we shall suppose that C'is any contour completely enclosing
the aerofoil and the (finite) wake, then, if I' is the constant circulation about the aerofoil
before the unsteady motions starts, the theorem states

[4]¢ =T
Closure of the aerofoil clearly requires that [¢], = 0, and hence
[w]e— T (19)

A convenient form of this equation can be obtained by considering the form w takes in the
neighbourhood of infinity, i.e. near { = —co. From equation (6) we find that

2 3 4 ;
=) o) o)) 2
W, w, w, W,
If equation (10) is now expressed as a power series in €%, and then transformed by (20)
into a power series in (a/w,), it will be found that

f:ln(U%)zi(fﬂ ﬂdy—fo Kd?])——ii( " fe ivdy+ ’ Kcoshnd?])
dw/ 27\)_, — wom\J) —; —u

a\2i/[" : 0
T (_m) 7_r< fe 27 dy —f K cosh 2y d?])
—p

wO —7r

a)3i T o 0 a\4
w(w —( f(e=17 - e~317) dy—l—f K(coshy+cosh 37) d77)+0(5) . (21)
o - 0

wy

For steady motion and zero circulation this equation becomes

N dzgy 1 (7 a\i (™, _. a\*i(m .
St (Ugn) = g, oty () [ tnerar () [ duertiray

__('d):"_i ﬂ00(e—i7+e—3i7)dy+0(£6)4. (22)

wy) m)_p

Thus, since lim f;, = 0, it follows from this equation that

we=0

" f,dy = 0. (23)

Further, since by definition [w,], = 0, a simple application of the theorem of residues to
the expansion for f yields

" gyeirdy = 0. (24)

Hence (22) can be written in the form

dz, a)? a)? fl_)‘*
ot ) ol ol ®
where B, :71, ' Oye%17 dy, (26)
and Co= —“71; ' fye 17 dy. (27)
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ACTING ON A THICK AEROFOIL IN UNSTEADY MOTION 139

Now lim f also vanishes, and so from equation (21) it follows immediately that
wWo= 0

¢9dy—— f Kdy = 0. (28)

Further, from equations (19), (21) and (25) it follows by the theorem of residues that
dz
dz,

In this paper we shall only be concerned with the case I' = 0, i.e. the aerofoil starts the
unsteady motion from the position of zero circulation. When I' is not zero the algebra is
more complicated but no new principles are involved. Thus

I'=—2a { fe-ivrdy+ KCOSh?]dT]}

m 0
fe"ivdy+| Kcoshydy=0. (29)
- —
With the aid of (28) and (29) the expansion (21) can now be written
Ug—z_H_B( )+C( )+0( ) (30)
Wo
where B=1{" ge-2iv dy— L K cosh 2y¢dy, (31)
- ),
17 1 (0
and C=—1[ gesir dy— lj K cosh 37dy. (32)
- -,

In the application of Helmholtz’s law the assumption will be made that ¢—g¢, is small
in the wake, but it will not be assumed, as is usual, that ¢, = U. Thus

K=[In(UJg)] [1n(1+ ) s [ ] = s

hence from (17) and (18) 0£+ 03§+ K(?ZSO = 0. (33)

From (25) the value of ¢, is

e ol ) o)) w

where (see appendix 1) @, and — 2a, are the real parts of B, and C, respectively. As shown in
appendix 1, ¢, depends on the aerofoil thickness, while a, depends on the distance between
the profile centre and the profile centroid. Equation (34) gives the value of ¢, in the wake
at large values of ¢,—the error term increasing as the trailing edge (¢, = 2a) is approached.
As boundary-layer separation probably introduces a term of order (a/¢,)* or even higher,
there is little point in considering more terms in the expansion of ¢,. Thus from (33) and (34)

ool il

where terms O(a/¢,)* have been omitted.
Summarizing these results we have that K must satisfy the integral equations (28) and
(29) and the differential equation (35).

Vol. 247. A. 18
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140 L. G. WOODS ON THE LIFT AND MOMENT

4. CALCULATION OF THE LIFT AND MOMENT

The lift and moment on a two-dimensional aerofoil in unsteady incompressible flow can
be calculated fairly simply from Blassius’s theorem. This method has the advantage that
surface integrals on the aerofoil can be replaced by integrals around any contour enclosing
the aerofoil, and hence it is only necessary to know the forms of the integrands near infinity.
For example, in figure 3, integrals around the aerofoil surface, C,, can be replaced by
integrals around contours C, and C. The integral over the wake vanishes (in all the cases in
which we are interested) owing to the continuity of pressure through the wake, and it
only remains to calculate the contribution from the contour C.

Ficure 3

Blasius’s theorem has been applied to the problem of the oscillating aerofoil by Sedov
(see Nekrasov 1948), and more recently by Couchet (1949, 1950). Sedov’s application was
to the linearized theory of oscillating aerofoils, whereas Couchet dealt with the thick
aerofoil. Apart from the use of Blasius’s theorem the author’s method is different from
Couchet’s.

In order to apply Blasius’s theorem it is necessary to have the following expansions:

Uz, = Uza+w0{1 --30(5)’;)2 —%00(55)3 +o(-;’—o)4}, (36)
and C%—: e—w{1+(Bo—B)(wio)2+(CO—C)(in)3+0(wio)4}. (37)

The first equation is obtained by integrating (25), Uz, being the constant of integration,
while the second follows from equations (2), (25) and (30). The constant z,, termed the
‘centre of the profile’ (see Milne-Thomson 1949), has some importance in aerofoil theory.
It can be calculated from

2= 5| 2y (39)
which can be proved as follows. From equation (6)

m (T [T _zodw(L
f_ﬂzody = 1f_ﬂzod§ = lf_WQasinhC'

Thus if C is any contour enclosing the aerofoil

m . zodwo_
f B A B vrm e
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where the change in sign is due to the integral on the aerofoil surface being taken in a
clockwise direction. Thus from (20),

f :Tzody ~i f C%@ et {14 0(e%)) du,

2
] o2
cWo Wy

Equation (38) follows from this equation by eliminating z, using (36), and then applying
the residue theorem.
Equation (38) can be written

. [ 1"y
Xg = o o 0dYs Yo = o _ﬂyO Vs
which exhibits the profile centre as a kind of centroid. For a symmetrical aerofoil

y(y) =—y(—7),

therefore y, = 0 and the profile centre lies on the chord line. An approximate equation for
x, is developed in appendix 2. The following remarks may give the reader some idea of
the location of the profile centre for any given case. For a body symmetrical about two
axes at right angles, such as an ellipse, the profile centre coincides with the geometrical
centroid. If the maximum thickness of an aerofoil lies in front of the mid-chord point so
will the profile centre (cf. equation (119)). It follows from (36) that if the origin of the
zy-plane is taken to be at the profile centre, then, apart from a scale factor, the z, and w,
planes coincide at infinity.

Blasius’s theorem (see Milne-Thomson 1949, § 9-52, where «, ¢ and M have the opposite
sign) can be stated thus:

If (D, L) is the force acting on the aerofoil per unit span, and M is the nose-up moment
about the origin of the z,-plane, then

iw Loy 1 (dw)\? B A B AN .
e i (D—iL) —é,ojc(-d—zo) dzo—|—pafczodw+1p3—tfcwdz0 ipl(uy—1v,)
+ipA{d(uy—ivy+1idz,) —i(ity—10,+1Z,4)}, (39)
2
and M—|—iN=%pf zo(gi’i) dzy— p(ug—ivy) f zydwp2 f zywdZ,
¢ \4% c it ¢

+apd(uy—ivy) z,+ Ap{3iz,(ty—1v,) — 2ké}, (40)

where 9/d¢ denotes the time rate of change at a point fixed in the z,-plane and N is merely
a dummy symbol. It is apparent from the analytic forms of the integrands in (39) and (40)
that only in the case of the last integral in (40) need the contour of integration C be on the
aerofoil surface. This last integral requires special attention.

If ‘2’ denotes ‘real part of” then

@f zywdz, = @f zywdzy+2| (%% +y04) dy,

c c c ;

the last integral of which vanishes in the linearized theory. From (40) it is apparent that

only the small time-dependent part of ¢ in f Yo9dy, is important. Thus neglect of this
¢ 4

18-2
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integral would at most result in an error of second order in the thickness effect. Making
this approximation, and writing

¥ = —vgxy+upyo+ 54(x§ +y5)

(cf. Milne-Thomson 1949, § 9-40) we find from Green’s theorem in two dimensions that

@f zowdz, = g?f zowdz,— 4”0[[% dix, dy, + 2u, [ ﬁ/o dx,dy,+ o'cff( 3x¢+y2) dxydy,,
c c J
whence, with neglect of a further second-order term in thicknesst
Rp gf zowdz, = %p g—f zowdzy—4px, Aoy +2py, Aty + 3k2p Ad.
te tJe
This equation enables (40) to be written

. d
M+iN = 2,of zo( ) dz,— P(“o_wo)f zodw—k,oa—tf zowdz,
c c
apA(uy—ivy) 2, +pA(RE+iz (i, +15,),  (41)

where C can now be any contour enclosing the aerofoil.

There is obviously no ultimate loss in generality in taking the origin of the z,-plane to be
at the profile centre, so that z, = 0, and this is done in the following analysis. The trans-
formation to a general axis position is given in § 12.

The integrals in (39) and (41) can be calculated from the theorem of residues with the
aid of the expansions (25), (30), (36) and (37). The results are:

dw) g . 2mia? 5 .
dz, = 0, szw=~f wdz, = = Beie,
fc(dzo ° ¢’ c U

12
f O(dw) dzy = —4mia®e 2%+ B, J zodw = — 2ma Beie,
c

dz, U
ma® ., .
and Lzowdzoz—[—ﬁCe ,
which enable (39) and (41) to be written
D+il = 27’(’}“ gt (Be ) 4 pA{ (1 +16) — z,(d2 +i&) €1}, (42)
A o oy u— pima3 - ((LC_ )
M+iN = —2mipa’ e B(l 7 )+ 2 o iaC

—ipAz {2d(usino+vcosa) — (& +10) e'*} +pAk2d,  (43)
in which I" has been made equal to zero, and u,, v, have been transformed into u, v (see
Notation, (u,+1iv,) e71* = u+1v).

It only remains now to calculate the values of B and C for any particular example. In
the next section B and C are evaluated for the important case of a rigid aerofoil.

1 The approximations introduced here can be avoided at the cost of considerable algebra.
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5. THE CASE OF A RIGID AEROFOIL

Figure 4 shows details of the motion of the aerofoil. P(xy,y,) is a point on the aerofoil
surface, and PQ and PR are parallel to OX and O, X, respectively. The velocity at P can be
resolved into components normal and tangential to the aerofoil surface. The normal com-
ponent must be equal to the velocity (n) of the surface in the direction of its normal. The
origin O, has perturbation velocities u cosa—wvsina, and #sina+vcosa in the directions
of 0, X, and 0,Y, respectively, and hence the normal velocity of the surface at P due to
this motion is

n = (usino+v cosa—adx,) cos f,— (u cos a —vsin o+ dy,) sin b,.

The tangential velocity at P is of the form ¢,+¢, where ¢ is the small perturbation in g, due
to the unsteady motion. It follows from the figure that

n
=10 +tan‘1( )—cx
‘ 9o te o
and hence to first order in perturbation velocities and displacements,

0= 00+£cos 0o— il«sinb’o— s (xycosby+y,sinb,) —a. (44)
9o 9o 9o

Y

3

FIGURE 4

This equation breaks down when ¢, is very small, that is, in the immediate neighbourhood
of the stagnation points. In these neighbourhoods, however, by far the more important
contribution to ¢ arises from the movement of the stagnation points. Consider, for instance,
the front stagnation point. If 4 is its position in steady flow (at y = 0) and B is its position
at any instant in the unsteady flow, then in the interval AB the value of § given by (44)
will be increased by 7 owing to the reversal in flow direction. Thus (44) is modified to read

+7 (*—01<)’<0),
(9:ﬂo+ﬁcosﬁo—£sin€0——£(xocost90+y0sin¢90)—oc (—a<y<m), (45)
9o 90 9o

+m (m—o,<y<m),
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where —o¢, and —o, are the displacements in y of the front and rear stagnation points
respectively. An exact treatment in the neighbourhood of the stagnation points would be
very difficult, if not impossible, as this would require knowing ¢ from the start, but as the
range over which the errors in (45) are relatively large, is only of the same order as the
perturbation magnitudes themselves, these errors can only contribute second-order terms
to the integrals giving the lift and moment.

From (23), (24), (28), (29) and (45) it follows that

¢ :—l—f (ﬁcos Ho—ﬁsin 0O-~o£(x0 cos 0+, sin 190)) dy+o,+0y,—2a, (46)
mJ —2\9o 9o 9o
17 (v u . a . . .
¢ ————;f_ (w(;cosﬁom»é;smﬁo—gh—)(xocos€0+—y051n00)) cosydy —sino, +sineo,, (47)

where the coefficients ¢, (z = 0,1) are defined by

0
cnzf?l; K cosh nydy. (48)
Similarly (31) and (32) become :
1(™ (v u . a .
B =B+ ;J_ﬂ(—q—o cos b, — 7 sin 6, — 7 (x4c0s 0+ y,sin ﬁo))

X (sin 2y +1icos 2y) dy —sin? ¢, —sin? g, + % sin 20, -+ % sin 20, —ic,,  (49)

and C= Cowlfﬂ (-v—cos Ho—ﬁsinﬂo—ﬁ(xocos 0o+, sin 00))(sin 3y+icos3y)dy
mJ—2\0 9o 9o .
i

3sin 30,4+ 1 sin 30,—ics, (50)

—3(cos 30, —1)+%(cos Bo,—1) 3
where ¢, and ¢ are defined by equation (49).

In appendix 1 it is shown that the integrals in equations (26), (27), (46), (47), (49) and
(50) can be reduced to simple forms in terms of the non-dimensional aerofoil parameters

defined by

u e .
n= g | Yosinny dy, (51)
U
b, =an)_Yocosny dy. (52)
. . . . 84

It is shown in appendix 1 that W% _saas (53)

4x
ay == —Egah (54)

‘ 2
and a;= (% — 1) a, (55)

k now being the radius of gyration of the profile about the profile centre (the origin). For
a symmetrical aerofoil 4, = 0.

The non-dimensional number § appearing in these equations is the ratio 4a/Uc, that is,
the ratio of the ‘chord length’ in the w,-plane to the real chord length multiplied by U.
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It occurs throughout the following theory, and has the physical significance of being the
theoretical value of the lift slope divided by 27 (cf. equation (87)). A fair approximation
to & for conventional aerofoils is & = 1 0-8¢/¢c, where ¢ is the maximum thickness. An exact
equation for ¢ is given in appendix 2.

In terms of the parameters a, and 4, equations (46), (47), (49) and (50) become

2v
€y = (—]—2a+¢71+02,

(56)
2aa . .
€ = —E s +sin gy,
B = al(l ——%) —%l—o%ézg—siﬁ o, —sin? g,

_{.i{bl(l — U) +”ZY1+0%22 +1sin 20, +1sin 202——02},

and C = ~—2{a2(1 ~—le;) —%bz—;% (b1+b3~albl)}—%(cos 30,—1)+%(cos 8s,—1)

——2i{b2(1 —%) +%a2+ 72 (2a,+2a,— a%+b)%} —Lsin 30, +%sin 30y —c,.

Substituting these results for B and C in equations (42) and (43) and retaining only first-
order terms in displacements, velocities, ¢}, o, and the parameters a, and 4,, we obtain the
following equations for the drag, lift and moment:

D— 27(1,}0;1 {2!) Ud—ayi— blv“‘“gv““}”l"/’A(u +y,8), (57)
L=—27Z'g {2 Ud+byti— alv—TfOH—U( ffz)}ﬂA(ﬁ—xc&), (58)

and M= —27rpa2{2aloc by+ey—0a,— 02—|—2b1U 21U+u?]b3 1%32

— G —tyl) — it (@ + )| +pA(RE—g, i), (59)
To the same order of accuracy, equations (56) yield

v da

$(6otey) = U %0 (60)

The position of the rear stagnation point must be assigned empirically. When this has been
done and the motion of the aerofoil is prescribed, (60) is an integral equation for K which
must be solved before D, L and M can be calculated. Equation (61) enables the unsteady
motion of the front stagnation point to be studied.

The theory developed so far applies to any type of unsteady motion provided the dis-
turbances are small. In the next part the theory is applied to the special but important
case of harmonic oscillations which have persisted for an infinite time.
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PART II. HARMONIC OSCILLATIONS
6. THE WAKE

In the case of harmonic oscillations (35) becomes

§§+m{1+2 (¢0) (2t )<¢O) K=o,
where K is defined by K(po, 1) = K(g,) e,

and terms O(a/¢,)* have been neglected. Solving this equation for K we find that (ignoring
second-order terms in ¢, and a, as in the previous section)

K = K,e"e-idcoshn {1 4 1ida, sechy+}(a; —iday) sech?p}, (62)

where K is a constant of integration,
' 2va

=77 = 300, (63)

and (cf. equation (6)) ¢, has been replaced by 2a cosh 5. The frequency parameter defined

by (63) occurs throughout the following analysis. In the case of a flat plate § = 1, when

A reduces to the frequency parameter usually used in oscillatory theory.

The displacements of the aerofoil are taken to be

x, = x0 eivt, Yy = yO eivt, o = o0 eivt’
so that u =ivx0 e v =iy e, a =ivale”, (64)
and i =—vi0e, v=—v%le", &=—12lel

Some assumption is now necessary regarding the movement of the rear stagnation point.
In this paper it is assumed that o, is in phase with and proportional in magnitude to the
relative incidence at the trailing edge, i.e.

. -
azze{ao(l—k%x,) wg}e”"

where ¢ is a real constant and x, is the distance between the profile centre and the trailing
edge. Itis convenient to make a slight approximation in this equation. The profile centre,
which is the origin in the (x,y)-plane, is situated approximately at the mid-chord point.

Thus x,~Lc~ e (%—%), from equation (116). Hence, with the aid of (63), we can write

the equation for 7, as
21y
%#4( m——m} (65)

As shown later the value of ¢ can be determined from the experimental value of the steady
lift slope, (9C;/da),—,.
Some use will be made of the equations (Watson 1952)

%Jwe—iA coshy cosh nn d” _ _;e—mrilz H;Z)(/I)’ (66)
0

and HE,(1) = 2 HP ()~ H2, (), (67)

T Since A is real the integral (66) is divergent when n>1. In this case the Abel limit of the integral
should be taken, i.e. A should be replaced by A—ie (¢>0) (a divergent oscillation), then the limit of the
integral as e—~0 taken.
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where H?(1) = J,(1) —1iY,(A) is the Hankel function of order n. All the Hankel functions
of the following theory are for argument A, which can therefore be omitted from the symbol
without ambiguity.

TABLE 1
Ay Ay
2 » 2 coefl. of a, coefl. of a,
A ~ A~ -~ S U —— P N —
0 1-00000 1-00000 — 0 0i 0 0i

0-02 0-98000 —0-06402i 0-98020  +0-00068i 0-0067 —0-0080i —0-0002 —0-0001i
0-04 0-96001 —0-11037i 0-96080  +0-00244i 0-0116 —0-0162i —0-0006 —0-00041
0-06 0-94002 —0-15004i 0-94180 +0-00505i 0-0149 —0-02391 —0-0012 —0-00061

- 4
< Qq ] J‘ 0-08 092004 —0-185361 0-92320 +0-00842i 0-0170 —0-0310i —0-0019 —0-0008i
— 0-1 0-90008 —0-21743i 0-90500 +4+0-012441 0-0178 —0-03751  —0-0027 —0-00091
;5 e 0-2 0-80067 —0:345711  0-81997 +0-04098i 0-0084 —0-0581i —0-0043 +0-0008i
~ 03 0-70224  —0-439281 (0-74483 +0-080451i —0-0156 —0-057561 +0-0025 +0-0056i1
O ) 04 0:60530 —0-509531 0-67947 +0-128061 —0-0459 —0-03591 0-0217 +0-01121
% - 0-5 0-51032 —0-56180i 0-62371 +0-181761 —0-0758 +0-0035i1 005644  4+0-01491
oY)
: O 0-6 \0'41776 —0:59927i 0-57733 - +0-23993i —0-1010 +0-05561 0-:0993  +0-01491
| 07 0-32806 —0:624101  0-54006 +0-30119i1 —0-1201 +0-11461 0-1540 +0-01121
0-8 0-24166 —0-637871  0-51160 +0-364381 —0-1338 +0-17571 0-2159 +0-0049i
::”2 0-9 0-15893 —0-64184i 0-49161 +0-42844i —0-1439 40-23511 0-2828 —0-00151
O o) 1-0 0-08027 —0:637071  0-47968 +0-492461 —0-1527 +0-2908i 0-3529 —0-00541
= —
[
845 4
(7] A ~ /- ~
9 <Zt 2 coeff. ff ay coeff. of a,
T 0 0 0i 0 0i
== 0-02 0-0073 —0-00831 —0-0002 —0-00011
0-04 0-0135 —0-01721 —0-0006 —0-00041
0-06 0-0189 —0-02611 —0-0013 —0-0008i1
0-08 0-0235 —0-03501 —0-0022 —0-00121
0-1 0-0275 —0:04391 —0-0033 —0-00161
0-2 0-0388 —0-08551 —0-0094 —0-00291
0-3 0-0389 —0-12191 —0-0143 —0-00261
0-4 0-0297 —0-15231 —0-0156 —0-00081
0-5 0-0124 —0-17641 —0-0122 +0-00271
0-6 —0-0119 —0-19371 —0-0030 +0:00771
0-7 —0-0419 —0-20401 ' +0-0123 4+0-01421
’ 0-8 —0-0763 —0-20781 0-0336 +0-02241
- \} 0-9 —0-1137 —0-20541 0-0606 +0-03251
<L 4 1-0 —0-1532 —0-19781 0-0927 +0-04491
—
;5 > Since in the present problem the wake extends to infinity, the value of # in equation (48)
2 E will be infinite. Thus from (48) and (62) o
L .
) 1 e i .
T O 6 =" K, e“”fo e it coshn cosh my{l +3 Aay sech g+ %(a; —ila,) sech? 77} dy.
= w
3 Z To integrate this expression it is necessary to evaluate the integrals
=0
= 2 e
826 I? = %fo e~idcoshngech pdy, (68)
oz
] .
= 21 [* .
EE and ‘ IP = — 7 e~ircoshngech?ydy. (69)

Vol. 247. A. 19
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148 L. C. WOODS ON THE LIFT AND MOMENT
From (65) it is readily proved that
A
=1 f HP() dA,
0

and 9 =12+ f : f :Hg,»(A) dada,

and these functions are set out in table 1. Equations (66), (68) and (69) enable us to write
€o=— iéKO eV {HP — fla [P — L(a, —ida,) IP}, (70)
¢, = — 3Ky e {HP — La, HP — 1(a, —iday) I}, (71)
0y = & Ky oW {HP —ay (P + }?) — }(a, —ikay) (HP + 1)) (72)
¢y = 3K, e {HP —da,(HP + 1HP) — +(a, —ida,) (4HP + 31{?)}. (73)

We notice here that the terms in a; and g, appearing in these equations have their origin
in equation (34), and thus represent the effect of allowing for the fact that the wake velocity
is less than U by an amount depending on the aerofoil thickness and shape. It now follows
from (60), (63), (64), (65), (70) and (71) that

170
4{a°(1 +3id) — 2y (1 —¢) —2ieda®
K, — i (74)
: EP AP 1-4)
H(2)+i1(2) . I 1I@
where Ay = oy oy (@ —ilay) HO D (75)

7. THE FRONT STAGNATION POINT

By definition, the position of the front stagnation point at any instant is y = ¢;. From
(61), (63), (64), (65), (71) and (74)

. . 2iAy° i 1—4,) . . . 2iAy°| .
_ vt 0 1 . - - 0 ____2 — 0 aivt 0 —_—— ivt
o, = 2e C[{(x (1+4id) 5 (1—e¢) 26/106 ](IMAI) ilale —l—e{oc (141A) 5 }C )
(76)
H . 2
where ) Az = %’141 'H%i) -+ %(al - 1/142) j_;—{f) s

and C here denotes Theodorsen’s function, H{?/(H? +iH{®).

Now if the aerofoil oscillates about an axis with co-ordinates (#,7) instead of the origin
(which is the profile centre), then it is a matter of simple kinematics to show that the dis-
placements &%, ° and «° in (74) and (76) should be replaced by

x0—7ya, y'+xa®, and o respectively.
Consider the simple case of a flat plate in pitching oscillation about (%, 7) with no viscous

slip at the trailing edge. In this case 4, = 4, =¢ =0, and § = 1, and (76) yields

0, = 260 i 0(1 A QiA’g) —iade, (77)
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The profile centre is now at the mid-chord point. Since lim C = 1, this equation yields the
A—>0

well-known steady-flow result lim ¢, = 22%. The amplitude ¥ and phase 7 of ¢,/2¢° are
A—>0

shown in figure 5 as functions of » (= 21) for a number of axis positions. These functions are
set out in table 2 for a greater range of w than shown in the figure.

(00 22
50
&7
7 e —
— — | —
S ) 01— [ b —
< 075 X ic
% —— )r —5—6—-— 2¢
2 / 1,
Sy ___l_c 4
g 10 L —
a T ————
= T
>3 0-50
Lé) -0 ' \‘%C
§ \
10 \
0 0-2 04 0-6 0-8 1-0 1-2 1-4 16

w

Ficure 5. The function o,/2a° for a flat plate.

In the flow of a real fluid the oscillation of the front stagnation point plays some part in
producing an oscillation in the position of boundary-layer separation near the trailing edge.
Thus (76) may have some application in the theory of unsteady boundary layers.

TABLE 2. THE FRONT STAGNATION POINT

i=1c i=1c i=0 i=—% i=—1%
A ~ ! /‘—-—_A—\
A X —7° X -7 X -0 X -7 X —70
0 1000 0 1000 0 1000 0 1000 0 1-000 0

001 0984 324 0984 296 0984 267 0984 238  (-984 2-10
003 0952 767 0952 6-82 0952 595 0952 509 0952 4-23
005 0923 1114 0922 971 0922 829 0922 687  0-923 5-44
01 0865 1777  0-861 1496  0-860 1213 0860 930  0-863 6-49
03 0769 3392 0742 2635 0729 1836 0730 1024  0-746 2-32
0-5 0785 4448 0720 33-83 0683 2156  0-681 859 0713 — 3-84
10 0998 6065 0807 4806 0-676 2928 0643 544 0721  —16-84
20 1636 7377 1176 6413 0788 4376 0626 291  0-833  —3528
30 2342 7902 16211 71-80 0964 5404  0-626 194 1008  —47-09
40 3070 8171 2092 76-07 1169 6110  0-625 144  1-206  —55-30
50 3806 8330 2574 7875 1-388  66:04  0-625 1115 1421  —61-08
100  7-528  86:66 5037  84-30 2572 7736 0625 059 2580  —74-04
© © 90-00 oo 90-00 0 90-00 0625 0 0 —90-00
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8. THE DRAG
From (57), (63) and (64)

D :g,oUZCiV‘{alx%z—l—b y°/12+@-b o+ 1040 coc"} ,oUZc:“"é1 A(x°+ycoc°) (78)

It is of some interest to consider the more general equation (57) for the drag in the case
of a symmetrical aerofoil, when &, = y, = 0. The equation becomes

2
D:p{A-—Qm }u

pa
From equations (7), (51) and the symmetry of the aerofoil
2 [2a ] -
Dpfa 2" gani
whence the virtual mass, M, of the aerofoil is
M=pal 2" ya
=p {H—Uj-zayo ¢o—1}- (79)

As a check on this result consider an elliptic cylinder of semi-axes ¢ and & for which (cf.

Milne-Thomson 1949, § 6-32)
po=—Ul(a+b) cosp,

where / is the eccentric angle of (x,y,), and the flow direction at infinity is parallel to the
semi-axis a. For this example, y, = bsinf, and (79) yields

M = ,oA—g = pmb?,
in agreement with the standard result (Bairstow 1939).

9. THE LIFT
From (72) and (74)

_ 21HP 0 i 2iAy° i 11 —4s\
Co = Hm§2’+iH(‘)2)|:{a (1 +§/1)— 5 }(1—-6) —ée/loc ](—1 1 ) el (80)
H® L 1] L H® 1 1[@
where Ay = gy —17—;%—1— +3(a,—ilay) 0—1%2%—3 .
By an application of the recurrence relation (67)
iHZ (2
e~ (11O

so that from (65), (76) and (80)
. o
Co—01— 0y =2 eiV’[{ocO(l + %/1) —2—1(;—?—} (1—

——26{060(1 + =

o

l

2°
i 2iy°

/I) }el”‘+1(l——e) a0 e, (81)
2 dc
/IC

where 4, =

{A At (82)

/-\
b;

w
~—r
~———

1— A
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ACTING ON A THICK AEROFOIL IN UNSTEADY MOTION 151
Substituting the derivative of (81) in (58) we find with the aid of (63) and ( 64) that

L 2 — 2 2__~ 2 A4/12
pU%cem { b /1} +7T{(1 €) (1+4,) (A2—2iCQ) +-¢ed A 232 g
+7r8{ (1—6) (1+4,) (1+3i) (2C+id) — 1el(zcur i) (144,
i A2a, A42x
+§/1(€—a1)+%/12(1—-2€)——~8—2—|—;§W—6—‘ o0, (83)

From the definition of 4, it will be observed that it depends on 4, and a,, vanishing when
these parameters vanish. Thus from the remark following equation (738) we see that the 4,
term in equation (83) represents the effect on the lift of allowing for the slowing up of the
velocity of the wake vorticity due to the aerofoil thickness.

The coeflicients of a; and a, in 4, are given in table 1. Quadratic terms in 4, and a, have
been ignored in the preparation of this table. When the aerofoil degenerates to a flat plate
satisfying the Joukowski condition, then a, =5, = 4 =4, =0, § =1, the equation (83)
yields the standard result. (See, for example, Jones (1941).)

10. THE MOMENT
From (73) and (74)

2H® 1 2iA 1—4.\ .
€y = HP 4 +3iH(‘,2’ I:{a"(l -+ «/l) 3y }(1 —€)— = Aoc"](l __A5) e, (84)
}1(2)_{_ 1H(2) . 4H(2)+3I(2)
Where A == /l H(2) 0. —++ ( /1612) WL ,

’ @ ;
but from (66), Hs = (8 4

4i
HP +iH® — 2 2 —I)C 1’
so that from (65), (76) and (84)

C .
P %‘eiw[{o&(l +—;~/1) ~ ngf } (1—¢) —lemﬂ(%f —iC+i)(1 FAg) —ilade, (85)

_ C(4;— A4,)
where s == A {A —As+ (zc—iwm)}'
The from (59), (63), (64), (81) and (85)

M = o% e‘“”-l—nb‘{~—/lb +“§4§3?’c+”w}

| +ﬂa{§(1—e) [(2iC—A) (1+A,) — (2iC—A+CA) (1 +4,)]

i a, A4%x)y°
—pAle—am) =S 5 5L
{2[(1+ A)_e 1+1/1)]|:(glg—1)(1+A) (2le+0 1) 1+A6)]
2 12
FIA(1 —26) — 2+ 2a, + 20%(a, + 3)+32f§§4k2}a (86)

which agrees with the classical result when ¢ = 0 and the aerofoil is a flat plate. The coeffi-
cients of ¢, and 4, in 4 are given in table 1.
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11. DETERMINATION OF THE VISCOUS SLIP AND THE CENTRE OF THE PROFILE
FROM THE STEADY AEROFOIL CHARACTERISTICS

Since lim 4,, Ag = 0, and lim C = 1, in the case of steady flow (83) and (86) degenerate to
A=0 A=0
C), = 2md(1—¢) o,
o2 o2
and C :?(1——a1)ao+~4—bl,
where C,, is the moment coefficient about the profile centre. If C,, is the moment coefficient

about the point (%, 7), then

~ X
These three equations yield P
il 2 —
% 2md(1—e), (87)
C,, md? %
_%M:?(l—alﬂ—%n?z(l——e). (88)

When «, and 0 have been calculated from the aerofoil co-ordinates,{ these equations can
be solved for ¢ and & so that the left-hand sides of the equations have their experimental
values.

Incidentally, equations (87) and (88) can be deduced directly from equations (16) and
the steady form of Blasius’s theorem (Woods 1953). This method yields the exact equations
for the derivatives of C; and C,,, but for the present application (87) and (88), which are
correct to the first order in a, are quite sufficient. The number 1—¢ may be termed the
‘ Joukowski efficiency’ of the aerofoil. For well-designed aerofoils this efficiency is between
80 and 909,.

Appendix 2 gives an equation for the position of the theoretical profile centre, which is
usually between 0-48¢ and 0-50¢ from the leading edge for modern aerofoil shapes. The action
of viscosity modifies the velocity distribution, particularly near the trailing edge, and this
has the effect of displacing the profile centre to the rear of its theoretical position.

12. THE AIR-LOAD COEFFICIENTS

Following Jones (1941) we shall denote the air-load coefficients by the real and imaginary
parts of the non-dimensional numbers, /,,, l54, m,, and ms,, defined by

L 0
Ib‘ljﬁéﬁi = llzyc_ -+ 134 o0,
M LBV

0
and 02h, e~ mlz‘%— +mg4af,

pU%2e™ 8
from which the comparatively unimportant displacement x° has been omitted. From (53),
(54), (55), (83) and (86) it follows that

Ly = m{(1—€) (1+4,) (P2 —2iC0) +22(e—a,)}, (89)
by =0 4,) (20 (1—e) 1+ 52) =5 | Fikle—an) + P21 -2+ ek, (90)

C
1 See equations (53) and (118).
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gy = @{i(1~e) [(HC—A) (14+4) — (AC—A+CN) (1 +Ag)] —ik(e—ay) + ¢ am} (91)
2
S N[ TG
+iA(1—2e)-2(e—a1)+5§"c—2a1p}. (92)

If [, = [, +il,, my, = m,+1im,, etc., where [, l,, m;, m,, etc., are real numbers, then to
first order in ¢, A, and A4, these equations can be written

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Vo

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Iy = bo(14a, L +eNy), ly = lyy(1-+a, Ly+eN,),
ly = 0l3(1+a; Ls+eNy) + ﬂalx%z ly = 0ly(1+a, Ly+eNy),
7ra1 )2, v [ (93)
my = 0myo(1+a, My +€Qy) + A my = Omag(1+a, My+€Qy),
— 52 ' 7’“1/€2 2 e 32
my = 0%mg(1+a, My+6Q3) — 2 A%, my == OPmyg(1+ay My +eQy),
where
lip =mA(A—2B), lyg = 2mAN,
lyo = tm(24+1B), Lo = 3m(A4+1—2B),
my = —$mBA, Myg = —3mAR,

M3y = g(QA—I—B/I),

Mg =-7§’(23+/1—/1A),

1 _ 2[4,(2IC—2) +4,1] v 2B
N € ) R Y B
S[4,(21C—1
LZZ_L%IA )Ja sz_la
, @[(20+M)(1+%A)A4] 24+ 1B)
= a,(24+1B) ’ Ny = " (24+1B)’
f[(20+m)(1 +EA) 1a1/1:| 2(04—B)
L, a,(A4+1—2B) N4:—(71A+/1—23)’
A[(2C+id) 4, — (20-+il—iC1) A,] .
1 aI/IB ) Ql R
 F(2C+id) A, — (2C+IA+ICN) A —ida,] 14
2 (Zl/lA ) Qz - Ta
P\
2% (1 += 210 —
L [(1+52) {2ic—) 4, (ziC +Ca - 6}+a1/1] o214
3 a, (24 + BX) 57 24+B1
ZJ[(I +%A) {(2IC—A) A, — (2iC+CL—) As}:l 2(4—B-2)
M4 = s Q4 =

4, A1 2B—1A)

(A\d—1—2B)’
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in which ‘.#”’ denotes the ‘imaginary part of’, and 4 and — B are the real and imaginary
parts of Theodorsen’s function, C. The twenty-four functions of A defined above are set out
in tables 3 and 4. The functions [}, lyy, - .., M,¢, My, -.. are the same as those occurring in the
classical flat plate theory for the air-load coeflicients [}, I,, ..., my, my, ....

TABLE 3. THE AIR-LOAD ‘STIFFNESS’ COEFFICIENTS

A llO Ll Nl l30 L3 N3
o 0 0 0 —1-0000 3-1416 0 —1-0000
< 0-02 —0-0082 0-2783 —1-1534 3-0300 0-0063 —1-0008
S 0-04 —0-0241 0-3761 . —1-2083 2-9186 0-0102 —1-0025
< 0-06 —0-0425 0-4704 —1-2664 2-8159 0-0126 —1-0048
> 0-08 —0-0605 0-5706 —1-3322 27233 0-0138 —1-0074
oF
o - 0-1 —0-0768 0-6814 —1-4088 2-6406 0-0141 —1-0103
- — 0-2 —0-1114 1-6141 —2-1284 2-3450 0-0071 —1-0252
O 0-3 —0-0553 6-4048 —6-1161 2-1736 —0-0093 —1-0389
um @, 0-4 0-0880 —6-3986 4-7117 2-0671 —0-0344 —1-0501
=w 05 0-3119 —2-5727 1-5179 1-9968 —0-0697 —1-0593
- 12)
§% 0-6 0-6115 —1-7522 0-8494 1-9482 —0-1164 —1-0667
T = 0-7 0-9834 —1-3961 0-5654 1-9132 —0-1752 —1-0726
[
8U w 0-8 1-4250 —1-2014 0-4109 1-8873 —0-2459 —1-0776
v 5 © 09 1-9348 —1-0840 0-3152 1-8676 —0-3274 —1-0816
92 1-0 2-5116 —-1-0111 0-2509 1-8522 —0-4181 —1-0850
=<
=y
ol A M0 M, Q M30 My Qs
0 0 — —1-0000 0-7854 — 0
0-02 —0-0024 —0-5700 —1-0000 0-7575 —0-9920 0-0361
0-04 . —0-0073 —0-5836 —1-0000 0-7297 —1-0078 0-0739
0-06 —0-0134 —0-5895 —1-0000 0-7040 —1-0129 0-1109
0-08 —0-0202 —0-5972 —1-0000 0-6808 —1-0180 0-1462
01 —0-0271 —0-6056 —1-0000 0-6602 —-1-0227 0-1795
0-2 —0-0593 —0-6740 —1-0000 0-5863 —1-0375 0-3144
0-3 —0-0845 —0-7875 —1-0000 0-5434 —1-0423 0-4065
0-4 —0-1037 —0-9491 —1-0000 0-5168 —1-0446 0-4697
0-5 —0-1184 —1-1604 —1-0000 0-4992 —1-0506 0-5140
] 0-6 —0-1299 —1-4237 —1-0000 0-4871 —1-0639 0-5459
<« :} 0-7 —0-1390 —1-7389 —1-0000 0-4783 —1-0693 0-5694
_ 0-8 —0-1464 —2-1039 —1-0000 0-4718 —1-1222 0-5870
< 0-9 —0-1525 —2-5195 —1-0000 0-4669 —1-1692 0-6006
— > 1-0 —0-1575 —2-9789 —1-0000 0-4630 —1-2284 0-6111
oln |
=5
i 5 It should be noticed that the flat plate results are modified by aerofoil thickness in three
T 0O ways:
=w

(1) the parameter }w is replaced by A (= }wd),
(2) I3, and m,, are multiplied by §, while m,, is multiplied by 42,
(3) the contributions from the a,; terms in (93).

The effects of viscosity are represented in the theory in two ways, namely,

(1) in the displacement of the profile centre to the rear of its theoretical position, which
modifies the value of # occurring in equations (94) below, and
(2) in introducing the ¢ term in (93).
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By transforming the moments and displacements to an axis at (%, 0) it is found that the
air-load coeflicients transform according to the formulae

. X
112 = llza Zs4 = 134“”;112,
N . - (94)
o x - x X
myg == mlz‘*‘;lm Mgy = m34+z(l34+m12)+(5) Ly
TABLE 4. THE AIR-LOAD ‘DAMPING’ COEFFICIENTS
4
< J‘ A Lz L, N, Ly L, N,
o 0 0 0 —1-0000 0 0 —1-0000
< 0-02 —0-1202 0-0062 —1-0000 —0-1746 0-3255 —1-0065
S > 0-04 —0-2329 0-0099 —1-0000 —0-2434 0-4637 ~1-0189
o 0-06 —0-3363 0-0119 —1:0000 —0-2697 0-6134 —1-0377
5 0-08 —0-4325 0-0126 —~1-0000 —0-2701 0-7940 —1-0649
e
)= O 0-1 —0-5227 0-0123 —1-0000 —0:2535 1-0263 —1-0763
: O 0-2 —0-9143 0-0014 —1-0000 —0-0498 9-0096 —2:-7170
= uw 0-3 —1-2534 —0:0182 —1-0000 0-2213 —2:6921 —0:2864
v 0-4 —1-5707 —0-0439 —1-0000 0-5027 —1-4345 —0-5313
5 Z 0-5 —1-8785 —0-0763 —1-0000 0-7815 —1-:0727 —0-5960
=0
E = 0-6 —2-1820 —0-1166 —1-0000 1-0551 —0-9066 —0-6238
0%5 0-7 —2-4839 —0-1655 —1:0000 1-3234 —0-8186 —0-6384
o 0-8 —2-7854 —0-2237 —1-0000 1-5870 —0-7724 —0-6470
=Z 0-9 —3-0872 —0-2913 —1-0000 1-8467 — 07527 —0-6524
P 10 —3-3894 —0-3681 —1:0000 2-1031 —0-7521 —0-6560
[y
A Mgy M, Q2 My M, Q4
0 0 —1-0000 0 0 —_— —1-0000
0-02 —0-0303 — 0-0377 —0:0594 —0-5713 —1-0048
0-04 —0-0587 —1-0088 0-0791 —0-0923 —0-5874 —1-0125
0-06 —0-0853 —1:0150 0-1210 —0:1145 —0-5962 —1:0222
0-08 —0-1081 —1-:0212 0-1622 —0-1304 —0-6063 —1-0336
0-1 —0-1307 —1-0270 0-2020 —0-1419 —0-6177 —1:0465
0-2 —0:2286 —1-0531 0-3744 —0-1695 —0:6993 —1-1262
0-3 —0-3134 —1-0526 0-5038 —0-1803 —0-8112 —1-2189
04 —0-3927 - —1-0497 0-6001 —0-1885 —0-9390 —1:3125
05 —0-4696 —1-0436 0:6724 —0-1973 —1-0703 —1-4001
o 0-6 —0-5455 —1-0383 0-7277 —0:2075 —1-1959 —1-4784
< 07 —0-6210 —1-0363 0-7707 —0-2189 —1-3093 —1-5465
1 b 0-8 —0-6964 —1-0396 0-8046 —0-2316 —1-4069 —1-6049
< 0-9 —0-7718 —1-0491 0-8317 —0-2452 —1-4863 —1-6545
S > 1-0 —0-8473 —1-0658 0-8538 —0-2596 —1:5466 —1-6966
okF '
~ =
= O 13. THE AIR-LOAD COEFFICIENTS IN STILL AIR
E o From (63), (89) to (92) and (94)
= )
< l = 021(1l —a
2% ( /2)2 ( 1):
I —
a5 7 7 x, X
oS hm L, = lim —2 = 821r{— +a (—f—~—)} | 95
25° S ST (el (99)
£ tim st = on| () e[ ) —2(%) +2])
= U=0 ( / 2) 4

Vol. 247. A. ; 20
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so that the theory yields no still air damping. However, viscous damping of the type that
is present in still air does make a significant contribution to /,, and a negligible contribution
to the other air-load coefficients (about the origin). For example, from some experimental
results given by Berg (1952) it is found that in still air
L _ 2 my my

D A O TR (0

To the author’s knowledge no adequate theory exists to predict the viscous damping on
an aerofoil in still and moving air. Since it is likely that at low values of U, i.e. at high values
of A, the viscous damping has nearly its still-air value, then under these conditions the
author’s theory can be expected to yield values of the damping coefficients relative to still
air. These relative coefficients are often obtained as a first step by experimentalists in the
determination of the absolute values of the coefficients. Some experimental evidence
appears in the next section on this point.

—0:0087.

14. COMPARISON WITH EXPERIMENT

The most recent experimental determination of the air-load coefficients in incompressible
two-dimensional flow was made at the Nationaal Luchtvaarlaboratorium, Amsterdam,
by Berg, Van der Vooren and others. While the experiments and subsequent reduction of
the data appear to have been made with considerable care the reports describing the work
give only two facts about the profile used, namely, thatit is 7-3 9, thick, with this maximum
thickness occurring at 0-30¢ from the leading edge. This omission is not surprising when it is
realized that, although only one aerofoil was used in these experiments, it is claimed that
the final results are applicable to all conventional aerofoil shapes. In as much as conven-
tional aerofoil shapes are about the same thickness and have about the same Joukowski
efficiency it is certainly true that the experimental results summarized by Berg & Van der
Vooren (1952) are an improvement over the theoretical flat plate results, but no more
than this can be concluded without conducting experiments in which the aerofoil thickness
and shape are varied. The work of Bratt & Wight (1945) indicates that the air loads do
vary significantly with aerofoil shape.

From the data given about the aerofoil profile, and experience with aerofoils with similar
characteristics the author estimates that for the N.L.L. aerofoil, ¢, ~0-12, 0~ 1-058, and
x,~ 0-35¢ from the leading edge. From the results in figures 3 and 5 of the paper by Berg
& Van der Vooren (1952) we find

100 _ .47

20,
21 da N

da 0,

where C,, is about the quarter-chord point. When these values are substituted in equations
(87) and (88) it is found that ¢ = 0-17 and that the profile centre is at 0-53¢ from the leading
edge. Thus the quarter-chord point is at ¥ = —0-28¢, ¥ being measured from the profile
centre. Using these values of 4, q;, ¢ and &/c in equations (93) and (94) we obtain finally
the damping air-load coefficients shown by the continuous lines in figures 6 and 7.

The damping relative to still air shown in these figures was obtained by subtracting
Berg’s (1952) experimental values of the still air damping from the experimental values of
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the air loads given by Berg & Van der Vooren (1952).1 Viscous damping is probably
responsible for the discrepancy between theory and experiment in the case of [, but it will
be noticed that the theory agrees quite well with the relative damping when o is large, a
result that was anticipated in the previous section. The agreement between experiment and
theory is good for i, and (7, +1,), but poor for /, and 7, at high values of ». This may not

3-0

A

., ///}f*
1-0 /’/j////////
° /'% ] /

0-1 '
| _—1
3 /’/1/ ..}ﬁz
0 e R - e RPN SR SHplpE——" Sp———

_0.4

<+

RN
> I P

N(f |

-0-6 \.\ \\
N \,
0 04 08 12 16 20
w
Ficure 6. The damping air-load coefficients (axis at quarter-chord point). —- - - flat plate theory;

— author’s theory; O experiment, absolute values; + experiment, relatlve to still air (from
Berg (1952) and Berg & Van de Vooren (1952)). ' :

be coincidental for the experiments were of two types, namely, (i) with fixed axes of rotation,
which enabled /,, (i#i,+-1,) and #,} to be derived, and (ii) with oscillating axes of rotation,
enabling 7, and /, to be separated. Thus the author’s theory is in good agreement with the
results of the first type of experiment but not with the second.

T The air-load coefficients given by Berg & Van de Vooren are related to those defined above by

5 s . 7 . T
lyg=—mky 3= 5 ky, = 5 M Mgy = — gy
I Moments only were measured; cf. the last of equations (94).

20-2
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Ficure 7. Values of 7,4/, (axis at quarter-chord point). —-—-—- flat plate theory; — author’s

theory; O experiment, absolute values; + experiment, relative to still air (from Berg (1952) and
Berg et al. (1952)).
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Frcure 8. Values of /i, about the third-chord axis of a 159, thick Joukowski aerofoil. —-—-—- flat
plate theory; ———— W. P. Jones’s theory; author’s theory; O experiment (from

Bratt & Wight (1945)).
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The author’s theory yields values of the air-load stiffness coefficients, /, and /;, which
are in poor agreement with the N.L.L. experimental values in the range 1-0<<w<2-0.
It is possible that the agreement could be improved by introducing a phase lag into the
oscillation of the rear stagnation point, but further experimental evidence is desirable before
doing this. However the still air stiffness (or inertia) coeflicients given by Berg (1952) tend
to confirm equation (95) as shown in the following table:

L/(3v)? L/ (30)* iy (30)* s/ ($0)?

mean expt. value 3-08 0-87 0-87 0-25
equation (95) 3-08 0-94 0-94 0-25
flat-plate theory 3-142 0-785 0-785 0-197

Some further experimental evidence supporting the present theory is shown in figure 8.
The experimental results were taken from Bratt & Wight (1945), while the curve due to
W. P. Jones was taken from his 1948 paper (see comments in the Introduction). For the
15 9, thick Joukowski aerofoil used in the experiments it is found that d~ 1-12 and ¢, ~ 0-20;
then from the steady-flow results given by Bratt & Wight (1945) (C,, against « for two axis
positions) and equation (88) we find that ¢ = 0-12, and that the profile centre is at the mid-
chord point. An application of table 4 and equation (94) then yields the theoretical curve
shown in figure 8.

The work described was carried out as part of the research programme of the National
Physical Laboratory, and this paper is published with the permission of the Director of the
laboratory. Most of the calculations for the paper were performed by Miss Sylvia W. Skan
of the Aerodynamics Division. The author also wishes to acknowledge the encouragement
and suggestions he received from Dr W. P. Jones, Superintendent of the Aerodynamics
Division.
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APPENDIX 1. CALCULATION OF THE AEROFOIL PARAMETERS

The integrals appearing in equations (26), (27), (46), (49) and (50), which depend only
on the aerofoil shape, can be reduced to simple forms by using the equation (Woods 1950)

Uzo = Uz,-uy—5 | o(y¥) coth (¢ —ip*) dy*. (101)
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The proof of this equation is similar to that of equation (16) given in § 2. On examining the
proof of equation (16) again, it will be noticed that it holds for any analytic function f,
satisfying lim f;(w,) = 0, with its imaginary part 0, specified on the aerofoil boundary.

Wo= 00

The function f = Uzg—wy— Uz

is clearly an analytic function in the z,, w, and { planes, and furthermore it follows from (36)
that lim fj(w,) = 0. On the aerofoil boundary ¥, vanishes so that the imaginary part of

W=

Sois U(yy—y,). Thus we have by comparison with equation (16),

T

Uz, = Uza+w0+g

or | Yo—Ya) cotF(y* +il) dy¥,

from which equation (101) immediately follows. v
Differentiating equation (101) with respect to w,, and making use of equation (20)
we find dz
=20

dw, 1— % j y, cosech { cosech? 3({ —iy*) dy*
tan (wo) f_,,yo rdy— 2317%](%) Jo¢ e dy
*3;](%) o€ +e9) dy + O 0) (102)
Comparison with equation (25) yields
B, = Zg _ yoe-irdy = a, +iby, (103)
and Cy=— %q o e v dy = —2(a,+1b,), ' (104)

where a, and b, (n = 1,2) are defined by equations (51) and (52) respectively.

Now the integrals
Ucost, 1™ Usind, .
- 9sin mydy, —f Osinmyd
ﬂf—ﬂ 9o ey mJ_n 90 7y

(m = 1,2,3), occurring in equations (47), (49) and (50), are the real and imaginary parts
of I,,, where

17 Ueiﬁo . . 177 dﬁ .
I :—f_” p -smmydym—;f”"waosmthdQ

since { = iy on the aerofoil. Thus from equation (6)

1 dz, sinh m{
Tn=— 2aU wa0 sinh { duw,

where, since the integrand is analytic, C is any contour enclosing the aerofoil, taken in an
anti-clockwise direction. From equations (20), (102), (103) and (104) it follows with the
aid of the theorem of residues that
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m i6
Similarly if J, = :—J qu " cos mydy (m=0,1,2,3),
-7 0
then Jo=2, Sy =0, J,=a,+ib,, J;= 2a,+2ib,. (106)

Now consider integrals of the type

K, =1Jﬂ gs—](xocosl?o—l—yosinﬁo) sinmydy (m=1,2,3),

mJ x40

1 (7_ _.dz,sinhm{
| Z U= Wo.
2am) _; % " dw, sinh{

Clearly K,=0. (108)

1.e. K,=2%

(107)

The integrand in (107) is not analytic, and so the integral cannot be evaluated by the
theorem of residues, but if y,dy,—a second order term in thickness—is neglected,t then
Rz,dz, = Rz,dz, so that (107) becomes

a1 dz, sinh m{
Km = 7 ’Q—J;J‘CZO Ud—womdwo.

From (25), (36), (102) and the theorem of residues it follows that

ab,

2
K2=”fj, K3:[—;Z(bl+bg—albl), (109)

where the origin has been taken at the centre of the profile as in § 5.
Making a similar approximation we find that if

L, = lf” ;—J(xocosﬁo—l—yosinﬁo) cosmydy (m=0,1,2,3),

mJ 24
then L,=0, L = —?—;l,
(110)
L,= —‘-Z—aU:Z, L,= ~%(2a1+2a3——a%+b%).

The coefficients 4, vanish for a symmetrical aerofoil; thus they represent the effect of
aerofoil camber. For modern aerofoils they are much smaller than the coefficients a,.
Useful approximations for a, can be found by making use of the approximation

Uxy, = —2acosy.
The equation for a; becomes

Uuerr . Uc\28 (7
ay=— _”yosmydw(g) ;;f_ﬂyodxo,

am

. 8 4

1.e. a, “—“;;_52?2, (lll)
4a

where 0= ("[ﬁ)’ (112)

T The same degree of approximation has already been used in deriving equation (43).
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and 4 is the profile area. The number ¢ is discussed in appendix 2. Similarly

ay~ —eq, (113)
2
and as~ (% — 1) ar, (114)

where x, is the position of the centroid, and £ is the radius of gyration about the profile
centre.

APPENDIX 2. THE VALUES OF § AND %,/¢

On the aerofoil surface, 7 = 0, equation (101) becomes

U 7
Usy = Usy =5 [ 9or®) cot Jy—y*) dy, (115)

where the origin of x, is here taken to be at the leading edge, y = 0, or ¢, = —2a. At this
leading edge (115) becomes

0 = Us,—2a+ o[ yo(y¥) cotlydy,

while at the trailing edge, y = 7, ¢, = 2a, x, = ¢, it yields

U,= Ux +2a——~f tan—y*dy
Addition and subtraction of these results yields
§—1+1 L,?Eﬁ“y 7 (116)

% L[ L7 Yo

and p 2{1 wf_,, p cotydy}. (117)
If the approximation 23—920 = 1—cos7y is used, these equations become
1 1 (e dx
5= 1 ) (118)
X, Lfo 1 fe . c—2% ' \

and e - W) ey ), (119)

where y, and y, denote the values of y on the upper and lower surfaces respectively.
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